
7ª lista de exercícios - integração indefinida

Questão 01. Utilizando as regras básicas de integração, calcule as integrais indefinidas abaixo:

b)
$$\int t^2 dt$$

c)
$$\int \frac{5}{x^3} dx$$

e)
$$\int \sqrt{x^3} dx$$

b)
$$\int t^2 dt$$
 c) $\int \frac{5}{x^3} dx$ d) $\int du$ e) $\int \sqrt{x^3} dx$ f) $\int (x^3 + 2) dx$

g)
$$\int (3x^2 + 2x - 1) dx$$

h)
$$\int \frac{1}{x^3} dx$$

i)
$$\int \frac{t^2 + 2}{t} dt$$

j)
$$\int (3x^3 + x) dx$$

g)
$$\int (3x^2 + 2x - 1)dx$$
 h) $\int \frac{1}{x^3} dx$ i) $\int \frac{t^2 + 2}{t} dt$ j) $\int (3x^3 + x)dx$ k) $\int (x - 1)(6x - 5)dx$

I)
$$\int x^3 \sqrt{x} dx$$

I)
$$\int x^3 \sqrt{x} dx$$
 m) $\int 3e^x dx$ n) $\int (\sqrt{x} + \frac{1}{\sqrt{x}}) dx$ o) $\int edx$ p) $\int 2 \sin x dx$ q) $\int \frac{6}{x} dx$

o)
$$\int edx$$

q)
$$\int \frac{6}{x} dx$$

r)
$$\int (\frac{t+1}{t})dt$$

r)
$$\int (\frac{t+1}{t})dt$$
 s) $\int (\cos t)dt$ t) $\int (2+3\cos t)dt$ u) $\int (1+2t)dt$ v) $\int (m)dm$

u)
$$\int (1+2t)dt$$

Questão 02. Verifique, por diferenciação, que as fórmulas integrais abaixo são válidas.

a) $\int (\text{senkx})dx = -\frac{1}{k}\cos kx + C$, onde k é uma constante não nula.

b) $\int (\cos kx) dx = \frac{1}{k} \operatorname{sen} kx + C$, onde k é uma constante não nula.

c) $\int e^{kx} dx = \frac{1}{k} e^{kx} + C$, onde k é uma constante não nula.

Questão 03. Utilizando as fórmulas apresentadas no exercício anterior, calcule as integrais abaixo:

a)
$$\int (\cos 2x) dx =$$

b)
$$\int (sen 3x) dx =$$

c)
$$\int e^{5t} dt =$$

d)
$$\int 5 \operatorname{sen}(5x) dx =$$

e)
$$\int (3 + 2\cos 2x) dx =$$

f)
$$\int 4e^{2s} ds =$$

Problemas de valor inicial

Questão 04. Considere as seguintes informações sobre um corpo em movimento retilíneo:

I) Posição inicial: 4m

II) Velocidade inicial: 20m/s

III) Aceleração constante e igual a 2 m/s²

b) Encontre a equação horária da posição desse corpo no instante t.

Questão 05. Em vários problemas nos deparamos com equações que envolvem derivadas. Essas equações são chamadas "Equações Diferenciais". A solução de uma equação diferencial é uma função cuja derivada satisfaz a igualdade dada. Resolva as seguintes equações diferenciais:

a)
$$\frac{ds}{dt} = 2t^3 + 5t$$
, $s(0) = 3$

b)
$$\frac{dy}{dx} = 3e^x$$
, $y(0) = 1$

a)
$$\frac{ds}{dt} = 2t^3 + 5t$$
, $s(0) = 3$ b) $\frac{dy}{dx} = 3e^x$, $y(0) = 1$ c) $\frac{dv}{dt} = 5t - 2$, $v(1) = 3$

Questão 06. As marcas de frenagem deixadas por um automóvel indicam que o freio foi plenamente aplicado por uma distância de 160 pés, até parar. Suponha que o carro em questão tenha uma desaceleração constante de 20 pés/s² sob as condições de frenagem. Qual era a velocidade do carro quando o freio foi aplicado?

Questão 07. Joga-se uma bola para cima, de uma altura inicial de 80 pés, com uma velocidade inicial de 64 pés/s. Deduza a função posição que dê a altura s (em pés) como função do tempo t (em segundos). Em que instante a bola atinge o solo? Dado g = - 32 pés/s² (aceleração da gravidade).

Questão 08. Aplica-se o freio de um carro quando este está se deslocando exatamente a 88 pés/s. O freio causa uma desaceleração constante de 40 pés/s². Que distância o carro ainda percorre até parar totalmente?

GABARITO PARCIAL

Questão 01.

b)
$$\frac{t^3}{3} + c$$

c)
$$\frac{-5}{2x^2} + 6$$

e)
$$\frac{2}{5}\sqrt{x^5} + 6$$

a)
$$6x + c$$
 b) $\frac{t^3}{3} + c$ c) $\frac{-5}{2x^2} + c$ d) $u + c$ e) $\frac{2}{5}\sqrt{x^5} + c$ f) $\frac{x^4}{4} + 2x + c$

g)
$$x^3 + x^2 - x + c$$

h)
$$\frac{-1}{2x^2} + 6$$

i)
$$\frac{t^2}{2} + 2 \ln t +$$

j)
$$\frac{3x^4}{4} + \frac{x^2}{2} + 0$$

g)
$$x^3 + x^2 - x + c$$
 h) $\frac{-1}{2x^2} + c$ i) $\frac{t^2}{2} + 2\ln t + c$ j) $\frac{3x^4}{4} + \frac{x^2}{2} + C$ k) $2x^3 - \frac{11x^2}{2} + 5x + c$

1)
$$\frac{2}{9}\sqrt{x^9} + c$$

I)
$$\frac{2}{9}\sqrt{x^9} + c$$
 m) $3e^x + c$ n) $\frac{2}{3}\sqrt{x^3} + 2\sqrt{x} + c$ o) $e^x + c$ p) $-2\cos x + c$ q) $6\ln x + c$

u)
$$t + t^2 + c$$

r) t + Int + c s) sent + c t) 2t + 3sent + c u) t +
$$t^2$$
 + c v) $\frac{m^2}{2}$ + c

Questão 03. a)
$$\frac{1}{2}$$
 sen 2x + c b) $-\frac{1}{3}$ cos 3x + c c) $\frac{1}{5}$ e^{5t} + c d) $-\cos 5x$ + c e) 3x + sen(2x) + c f) 2e^{2s} + c

Questão 04. a)
$$v = 2t + 20$$
 b) $S = t^2 + 20t + 4$

b)
$$S = t^2 + 20t + 4$$

Questão 05. a)
$$s = \frac{t^4}{2} + \frac{5t^2}{2} + 3$$
 b) $y = 3e^x - 2$ c) $v = \frac{5t^2}{2} - 2t + \frac{5}{2}$

b)
$$y = 3e^x - 2$$

c)
$$v = \frac{5t^2}{2} - 2t + \frac{5}{2}$$

Questão 06. 80 pés/s

Questão 07. a)
$$S = -16t^2 + 64t + 80$$
 b) no solo $S = 0$, assim $t = 5$ s

b) no solo
$$S = 0$$
 assim $t = 5$ s

Questão 08. Considerando como velocidade inicial v = 88 pés/s temos: v = 88 - 40t e S = -20t² + 88t Quando o carro parou temos $v = 0 \Rightarrow 88 - 40t = 0 \Rightarrow t = 2,2 \text{ s} \Rightarrow S = 96,8 \text{ pés.}$

