

Programa de Ensino de 2025

1° Semestre

Nome do Curso	\rightarrow	Eng. Mecânica
Código do Curso	\rightarrow	

Nome da Unidade Curricular -		Modelos Matemáticos
Código da Unidade Curricular		16850
Carga Horária Total		160 h
Carga Horária Teórica		160 h
Período	\rightarrow	1°

Objetivos da Disciplina

- Construir com os alunos os principais conceitos e técnicas da Matemática do ponto de vista histórico evolutivo, integrados a problemas práticos e relacionados às suas várias áreas de aplicação.
- Desenvolver a lógica e utilizar as ferramentas e técnicas da Matemática na resolução de problemas.
- Propiciar ao discente a possibilidade de coletar ou produzir dados, testar e analisar hipóteses através de experimentos envolvendo os principais conceitos da Matemática.

Ementa

- Funções reais de uma ou mais variáveis reais
- Diferenciação
- Problemas de Otimização.
- Cálculo de áreas. Integral Definida e Indefinida.

Programa de Ensino (títulos e discriminação de unidades e subunidades)

Unidade 1: Modelagem utilizando o conceito de função

- 1.1 Motivação: a importância da Modelagem Matemática
- 1.2 Introdução ao conceito de função
- 1.3 Modelo Linear: conceitos e aplicações

Unidade 2: Cálculo Diferencial

- 2.1 Motivação: um problema de taxa de variação instantânea
- 2.2 Derivadas para funções reais de uma variável real: conceitos, notações, cálculo e aplicações
- 2.3 Aplicações das derivadas como taxa de variação instantânea
- 2.4 Regra da Cadeia: conceitos, notações e aplicações

Unidade 3: Cálculo Integral

- 3.1 Cálculo de áreas
- 3.2 Integração: motivação e notações
- 3.3 Integral Indefinida: conceito, notações, cálculo e aplicações
- 3.4 Integral Definida: conceito, notações, cálculo e aplicações

Unidade 4: Laboratório de Matemática

- 4.1 Fundamentos da Trigonometria
- 4.2 Experimento 1 Construção do Quadrante
- 4.3 Modelo quadrático: conceitos e aplicações
- 4.4 Experimento 2 Otimização da Cerca
- 4.5 Problemas de Otimização
- 4.6 Experimento 3 Otimização de Caixas
- 4.7 Logaritmos: conceitos e aplicações
- 4.8 Experimento 4 Modelagem de Fenômenos Naturais Avalanche

CRONOGRAMA DE AULAS – MÓDULO 1

Aula	Data	Tema da aula	
1	18/02	 Apresentação do programa, critério de avaliação e bibliografia básica. A importância da Modelagem Matemática na resolução de problemas da Engenharia Introdução ao conceito de função e suas aplicações. 	
2	25/02	Modelo Linear – conceito, representação gráfica	
3	11/03	Modelo Linear – Aplicações	
4	18/03	Diferenciação: conceito, notações e aplicações como taxa de variação instantânea.	
5	25/03	Cálculo das derivadas elementares	
6	01/04	Problemas de taxa de variação instantânea	

7	08/04	Derivada do Produto e Quociente
8	15/04	Resolução de Exercícios
9	22/04	AVALIAÇÃO P1
10	29/04	Devolução e correção da Avaliação M1Função Composta e a Regra da Cadeia.
11	06/05	Aplicações da Regra da Cadeia
12	13/05	 Como calcular a área sob uma curva? O conceito de Integral. Integral Indefinida
13	20/05	Integral Indefinida: cálculo e aplicações
14	27/05	Integral Definida: cálculo e aplicações
15	03/06	AVALIAÇÃO P2
16	10/06	AVALIAÇÃO DE 2 CHAMADA (P1 ou P2)
17	17/06	Devolução e correção da Avaliação M2.Orientação para o Exame Final
18	24/06	EXAME FINAL

Metodologia

O desenvolvimento do programa da UCA - Modelos Matemáticos será realizado com base no projeto pedagógico do curso. Serão observadas e conciliadas as necessidades da classe com as técnicas didático – pedagógicas atuais. As aulas serão expositivas ou demonstrativas, vinculadas a tarefas dirigidas, soluções de problemas, atividades laboratoriais e utilização de softwares (Excel, Geogebra, Winplot).

Os dias letivos, exceto os de avaliação, serão subdivididos da seguinte maneira:

- 1. Desenvolvimento e considerações teóricas ou conceituais, acompanhadas de exemplos, ilustrações e motivações;
- 2. Atividades práticas envolvendo a resolução de problemas e exercícios para fixação dos conceitos.
- 3. Os alunos também realizarão atividades complementares contextualizadas visando a fixação e recuperação de conteúdos por meio da resolução de listas de exercícios referente à aula anterior.

Plano de Avaliação do Desenvolvimento da Aprendizagem

A avaliação final será resultado das atividades realizadas ao longo do semestre. Estão previstas duas Provas Individuais (**P**₁ **e P**₂) com notas variando de 0 a 6 e Atividades Laboratoriais (**AL**) com notas variando de 0 a 4. A média semestral (**MS**) será então calculada da seguinte forma:

$$MS = \frac{M_1 + 2.M_2}{3}$$

com $M_1 = P_1 + AL_1$ e $M_2 = P_2 + AL_2$. Aos alunos com média semestral $3 \le MS \le 4.9$ será aplicada uma avaliação de recuperação AR (Exame) e sua média final (MF) será então dada por: $MF = \frac{MS + AR}{2}$

Bibliografia

Bibliografia Básica

SILVA, Robson Rodrigues da; MARTINI, Silvia Cristina. Notas de aula: Cálculo Diferencial e Integral I: Conceitos e Aplicações. Mogi das Cruzes: UMC, 2022. 1 recurso online (126 p.: il.) ISBN 978-65-80660-02-5.

https://rodrigues.mat.br/pdf/index.html

SILVA, Robson Rodrigues da; MARTINI, Silvia Cristina. Notas de aula: Cálculo Diferencial e Integral 2:

Conceitos e Aplicações. Mogi das Cruzes: UMC, 2023. 1 recurso online (134 p.: il.) ISBN 978-65-80660-05-6.

https://rodrigues.mat.br/pdf/index3.html

SILVA, Robson Rodrigues da et al. Cálculo Aplicado às Engenharias. São Paulo: UMC, 2019. 127 p. ISBN 9786580660001.

https://rodrigues.mat.br/pdf/index2.html

STEWART, J. Cálculo. 8° Ed. V.1. São Paulo: Cengage Learning, 2016.

https://integrada.minhabiblioteca.com.br/books/9788522126859

Bibliografia Complementar

BROCKMAN, Jay B. Introdução à Engenharia: Modelagem e Solução de Problemas. Rio de Janeiro LTC 2010 1 recurso online ISBN 978-85-216-2275-8.

https://integrada.minhabiblioteca.com.br/#/books/978-85-216-2275-8

ELLENBERG, Jordan. O poder do pensamento matemático: a ciência de como não estar errado. Rio de Janeiro Zahar 2015 1 recurso online ISBN 9788537814505.1-0.

https://integrada.minhabiblioteca.com.br/#/books/9788537814505

KREYSZIG, Erwin. Matemática superior para engenharia, V.1. 9. Rio de Janeiro LTC 2008 1 recurso online ISBN 978-85-216-234.

https://integrada.minhabiblioteca.com.br/#/books/9788521636328

OLIVEIRA, Samuel Rocha et al. Coleção M³.

https://m3.ime.unicamp.br/ (último acesso: 14/02/2021)

Nome do Professor	Mogi das Cruzes, 17/02/2025		
Robson Rodrigues da Silva			